Pearson New International Edition

Object Oriented Systems Analysis
and Design

Noushin Ashrafi Hessam Ashrafi
First Edition

ALWAYS LEARNING" PEARSON®

Pearson New International Edition

Object Oriented Systems Analysis
and Design
Noushin Ashrafi Hessam Ashrafi
First Edition

PEARSON®

Pearson Education Limited

Edinburgh Gate

Harlow

Essex CM20 2JE

England and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsoned.co.uk

© Pearson Education Limited 2014

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the
prior written permission of the publisher or a licence permitting restricted copying in the United Kingdom
issued by the Copyright Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark
in this text does not vest in the author or publisher any trademark ownership rights in such

trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this
book by such owners.

[l ISBN 10: 1-292-03960-4
PEARSON ISBN 13: 978-1-292-03960-2

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Printed in the United States of America

P EA RS ON CuUSsSTOM L I B R ARY

Table of Contents

References
Noushin Ashrafi/Hessam Ashrafi 1

|. Information Systems
Noushin Ashrafi/Hessam Ashrafi 7

2. The Concept of Object Orientation
Noushin Ashrafi/Hessam Ashrafi 36

3. Methodology
Noushin Ashrafi/Hessam Ashrafi 61

4. Gathering Requirements
Noushin Ashrafi/Hessam Ashrafi 109

5. Domain Analysis
Noushin Ashrafi/Hessam Ashrafi 153

6. Behavioral Modeling: Use Cases: The Basics
Noushin Ashrafi/Hessam Ashrafi 189

7. Behavioral Modeling: Developing Use Cases
Noushin Ashrafi/Hessam Ashrafi 214

8. Structural Modeling
Noushin Ashrafi/Hessam Ashrafi 257

9. Dynamic Modeling
Noushin Ashrafi/Hessam Ashrafi 303

|0. The Design Challenge
Noushin Ashrafi/Hessam Ashrafi 345

| I. Application Design: Flow & Control
Noushin Ashrafi/Hessam Ashrafi 378

| 2. Application Design: The User Interface
Noushin Ashrafi/Hessam Ashrafi 411

| 3. Application Design: Database & Persistence
Noushin Ashrafi/Hessam Ashrafi

|4. Patterns
Noushin Ashrafi/Hessam Ashrafi

| 5. Components & Reuse
Noushin Ashrafi/Hessam Ashrafi

| 6. Architecture
Noushin Ashrafi/Hessam Ashrafi

| 7. Implementation
Noushin Ashrafi/Hessam Ashrafi

Index

453

508

529

556

596
621

REFERENCES

From References of Object-Oriented Systems Analysis and Design, First Edition. Noushin Ashrafi,
Hessam Ashrafi. Copyright © 2009 by Pearson Education, Inc. Published by Pearson Prentice
Hall. All rights reserved.

REFERENCES

[Alexander 1977] Alexander, Christopher, Sara
Ishikawa, and Murray Silverstein, 1977. Pattern
Language: Towns, Buildings, Construction. New York:
Oxford University Press.

[Alhir 1998] Alhir, Sinan Si, 1998. UML in a Nutshell.
Sebastopol, CA: O’Reilly.

[American Heritage 19961 The American Heritage®
Dictionary of the English Language, Third Edition, 1996.
Houghton Mifflin Company.

[Arlow 2004] Arlow, Jim, and Ila Neustadt, 2004.
Enterprise Patterns and MDA: Building Better Soft-
ware with Archetype Patterns and UML. Boston:
Addison-Wesley.

[Armour 2001] Armour, Frank, and Granville Miller,
2001. Advanced Use Case Modeling: Software Systems.
Boston: Addison-Wesley.

[Arrington 2003] Arrington, C. T., and Sayed H. Rayhan,
2003. Enterprise Java with UML. New York: Wiley.

[Ashrafi 1995] Ashrafi, Noushin, Hessam Ashrafi, and
Jean-Pierre Kuilboer, “ISO-9000-3: Guidelines for
Software Quality,” Information Systems Management,
Summer 1995.

[Avison 2003] Avison, David E., and G. Fitzgerald,
“Where Now for Development Methodologies?”
Communications of the ACM, Vol. 46, No. 1 (January 2003).

[Avison 1995] Avison, David E., and G. Fitzgerald, 1995.
Information Systems Development: Methodologies,
Technigues and Tools, 2nd Edition. London: McGraw-Hill
Book Company.

[Awalt 2004] Awalt, Don, and Rick McUmber, “Secrets
of Great Architects,” Microsoft Architects Journal, Vol. 3
(July 2004).

[Bahrami 1999] Bharami, Ali, 1999. Object-Oriented
Systems Development: Using the Unified Modeling
Language. Boston: Irwin McGraw-Hill.

[Basiura 2001] Basiura, Russ, Mike Batongbacal,
Brandon Bphling, Mike Clark, Andreas Eide, Robert
Eisenberg, Brian Loesgen, Christopher L. Miller,
Matthew Reynold, Bill Sempf, and Srinivasa
Sivakumar, 2001. Professional ASP.NET Web Services.
Birmingham, UK: Wrox Press.

[Bass 2003] Bass, Len, Paul Clements, and Rick Kazman,
2003. Software Architecture in Practice, Second Edition.
Boston: Addison-Wesley.

[Beck 2000] Beck, Kent, 2000. Extreme Programming
Explained. Boston: Addison-Wesley.

[Bennet 2002] Bennett, Simon, Steve McRobb, and Ray
Farmer, 2002. Object-Oriented Systems Analysis and
Design Using UML. Englewood Cliffs, NJ: Prentice Hall.

[Bittner 2002] Bittner, Kurt, and Ian Spence, 2002. Use
Case Modeling. Boston: Addison-Wesley.

[Blum 1992] Blum, Bruce 1., 1992. Software Engineering:
A Holistic View. New York: Oxford University Press.

[Booch 1999] Booch, Grady, James Rumbaugh, and
Ivar Jacobson, 1999. The Unified Modeling Language
User Guide. Boston: Addison-Wesley.

[Booch 1994] Booch, Grady, 1994. Object-Oriented Analysis
and Design with Applications, Second Edition. Red-
wood City, CA: The Benjamin/Cummings Publishing
Company, Inc.

[Brooks 1995] Brooks, Frederick P, Jr., 1995. The Mythical
Man-Month: Essays on Software Engineering. Reading,
MA: Addison-Wesley Publishing Company.

[Brookshear 2003] Brookshear, J. Glenn, 2003. Computer
Science: An Ouerview: 7th Edition. Reading, MA:
Addison-Wesley Publishing Company.

[Brown 2001] Brown, Kyle, Gary Craig, Greg Hester,
Jaime Niswonger, David Pitt, and Russell Stinehour,
2001. Enterprise Java Programming with IBM WebSphere.
Upper Saddle River, NJ: Pearson Education.

[Brown 1998] Brown, William H., Raphael C. Malveau,
Hays W. “Skip” McCormick III, and Thomas J.
Mowbray, 1998. Anti-Patterns: Refactoring Software,
Architectures, and Projects in Crisis. New York: Wiley.

[Campbell-Kelly 2003] Campbell-Kelly, Martin, 2003.
From Airline Reservations to Sonic the Hedgehog:
A History of the Software Industry. Cambridge, MA: The
MIT Press.

[Chapin 2002] Donald Chapin, “What’s the Business
in Business Rules?” Business Rules Journal, Vol. 3, No. 10
(October 2002). URL: http://www.BRCommunity.
com/a2002/b119.html.

[Chessman 2001] Chessman, John, and John Daniels,
2001. UML Components: A Simple Process for Specifying
Component-Based Software, 2001. Boston: Addison-Wesley.

[Chiera 1938] Chiera, Edward, 1938. They Wrote on
Clay. Chicago: The University of Chicago Press.
(Copyright Renewed 1966)

References

[Chisholm 2002] Malcolm Chisholm, “The Black
Box Problem,” Business Rules Journal, Vol. 3, No. 3
(March 2002). URL: http://www.BRCommunity.
com/a2002/b100.html.

[Chonoles 2003] Chonoles, Michael Jesse, and James
A. Schardt, 2003. UML 2 for Dummies. Indianapolis, IN:
Wiley Publishing, Inc.

[Clark 2001] Clark, Andy, 2001. Mindware: An Introduction
to the Philosophy of Cognitive Science. New York: Oxford
University Press.

[Coad 1997] Coad, Peter, Mark Mayfield, and David
North, 1997. Object Models: Strategies, Patterns, and
Applications, 2nd Edition. Upper Saddle River, NJ:
Prentice Hall.

[Coad 1992] Coad, Peter, “Object-Oriented Patterns,”
Communications of the ACM, Vol. 35, No. 9 (September
1992).

[Cockburn 2002] Cockburn, Alistair, 2002. Agile
Software Development. Boston: Addison-Wesley.

[Cockburn 2001] Cockburn, Alistair, 2001. Writing
Effective Use Cases. Boston: Addison-Wesley.

[Codd 1979] Codd, E. E, “Extending the Data Base
Relational Model to Capture More Meaning,” ACM
Transactions on Database Systems, Vol. 4, No. 4 (December
1979), 397-434.

[Codd 1970] Codd, E. E, “A Relational Model of Data
for Large Shared Data Banks,” Communications of
ACM, Vol. 13, No. 6 (June 1970), 377-387.

[Conallen 2003] Conallen, Jim, 2003. Building Web
Applications with UML, Second Edition. Boston:
Addison-Wesley.

[Cook 1996] Cook, Melissa, 1996. Building Enterprise
Information Architecture: Reengineering Information
Systems. Upper Saddle River, NJ: Prentice Hall.

[Cooper 1995] Cooper, Alan, 1995. About Face: The
Essentials of User Interface Design. Foster City, CA: IDG
Books.

[Cooper 2003] Cooper, James W., 2003. C# Design
Patterns: A Tutorial. Boston: Addison-Wesley

[Coplien 1997] Coplien, James O., 1997. “Domain
Analysis and Patterns,” Bell Labs. URL: http://users.
ren.com/jcoplien/oopsla/OopslaDomainPatterns-
1.html.

[Crnkovic 2002] Crnkovic, Ivica, Brahim Hnich,
Torsten Jonsson, and Zeynep Kiziltan, “Specifi-
cation, Implementation, and Deployment of Compo-
nents,” Communications of ACM, Vol. 45, No. 10
(October 2002).

[D’Souza 1999] D’Souza, Desmond Francis, and
Cameron Wills, 1999. Objects, Components, and

Frameworks with UML: The Catalysis Approach. Boston:
Addison-Wesley.

[Dutka 1989] Dutka, Alan F., and Howard H. Hanson,
1989. Fundamentals of Data Normalization. Reading,
MA: Addison-Wesley.

[Evitts 2000] Evitts, Paul, 2000. A UML Pattern Language.
Indianapolis: Macmillan Technical Publishing (MTP).

[Faison 2002] Faison, Ted, 2002. Component-Based
Development with Visual C#. New York: M&T Books
(Wily).

[Fielding 2000] Fielding, Roy Thomas, 2000. Architectural
Styles and the Design of Network-Based Software
Architecture. Doctoral Dissertation. University of
California, Irvin. URL: http://www.ics.uci.edu/
~fielding /pubs/dissertation.

[Fowler 2003] Fowler, Martin, 2003. Patterns of Enterprise
Application Architecture. Boston: Addison-Wesley.

[Fowler 2000a] Fowler, Martin, with Kendall Scott,
2000. UML Distilled, Second Edition: A Brief Guide to the
Standard Modeling Language. Boston: Addison-Wesley.

[Fowler 2000b] Fowler, Martin, 2000. Refactoring:
Improving the Design of Existing Code. Boston:
Addison-Wesley.

[Fowler 1997] Fowler, Martin, 1997. Analysis Pattern:
Reusable Object Models. Boston: Addison-Wesley.

[Freeman 2004] Freeman, Eric, and Elisabeth
Freeman with Kathy Sierra and Bert Bates, 2004.
Head First Design Patterns. Sebastopol, CA: O'Reilly.

[Gamma 1997] Gamma, Erich, Richard Helm, Ralph
Johnson, and John Vlissides, 1997. Design Patterns:
Elements of Reusable Object Oriented Software. Reading,
MA: Addison-Wesley.

[Glass 2002] Glass, Robert L., 2002. Facts and Fallacies of
Software Engineering. Boston: Addison-Wesley.

[Goldfedder 2002] Goldfedder, Brandon, 2002. The Joy
of Patterns: Using Patterns for Enterprise Development.
Boston: Addison-Wesley:.

[Graham 2001] Graham, Ian, Alan O’Callaghan, and Alan
Cameron Wills, 2001. Object-Oiented Methods: Principles &
Practice, Third Edition. Boston: Addison-Wesley.

[Groff 1999] Groff, James R., and Paul N. Weinberg,
1999. SQL: The Complete Reference. Berkeley: Osborne/
McGraw-Hill

[Haggerty 2000] Neville Haggerty, 2000. “Modeling
Business Rules Using the UML and CASE,” Business
Rules Community. URL: http://www.brcommunity.
com/cgi-bin/x.pl/features/b016.html.

[Halpin 2001] Halpin, Terry, 2001. Information Modeling
and Relational Databases: From Conceptual Analysis to

References

Logical Design, Using ORM with ER and UML. San
Fransisco: Morgan Kaufmann Publishers.

[Harmon 2000] Harmon, Paul, Michael Rosen, and
Michael Guttman, 2000. Developing E-Business Systems
and Architectures: A Manager’s Guide. San Francisco,
CA: Morgan Kaufmann.

[Hilliard 1999] Hilliard, Rich, 1999. “Using the
UML for Architectural Description,” UML 99:
Proceedings of Second International Conference
on the Unified Modeling Language. New York:
Springer-Verlag.

[Jackson 2001] Jackson, Michael, 2001. Problem Frames:
Analyzing and Structuring Software Development
Problems. Harlow, England: Addison-Wesley.

[Jackson 1995] Jackson, Michael, 1995. Software-
Requirements and Specifications: A Lexicon of Prac-
tice, Principles and Prejudices. Harlow, England:
Addison-Wesley.

[Jacobson 1999] Jacobson, Ivar, Grady Booch, and James
Rumbaugh, 1999. The Unified Software Development
Process. Boston: Addison-Wesley.

[Jacobson 1995] Jacobson, Ivar, Maria Ericsson, and
Agneta Jacobson, 1995. The Object Advantage: Business
Process Reengineering ~ With ~ Object Technology.
Wokingham, England: Addison-Wesley.

[Jacobson 1992] Jacobson, Ivar, Magnus Christerson,
Patrik Jonsson, and Gunnar Overgaard, 1992. Object-
Oriented Software Engineering: A Use Case Driven
Approach. Harlow, England: Addison-Wesley.

[Johnson 2000] Johnson, Jeff, 2000. GUI Bloopers: Don’ts
and Do’s for Software Developers and Web Designers. San
Fransisco: Morgan Kaufmann Publishers.

[Kean 2001] Kean, Liz, 2001. “Domain Engineering and
Domain Analysis,” Carnegie Mellon University: The
Software Engineering Institute (SEI). URL: http://
www.sei.cmu.edu/str/descriptions/deda_body.html.

[Kendall 1999] Kendall, Kenneth E., and Julie E.
Kendall, 1999. Systems Analysis and Design, Fourth
Edition. Upper Saddle River, NJ: Prentice Hall.

[Kleppe 2003] Kleppe, Anneke, Jos Warmer, and Wim
Bast, 2003. MDA Explained, The Model Driven Architecture:
Practice and Promise. Boston: Addison-Wesley.

[Kulak 2000] Kulak, Daryl, and Eamonn Guiney,
2000. Use Cases: Requirements in Context. New York:
ACM Press.

[Landay 1996] Landay, James A., and Brad A. Myers.
“Sketching Storyboards to Illustrate Interface
Behaviors,” Electrical Engineering and Computer
Sciences, University of California at Berkeley. URL:
http://www.cs.berkeley.edu/~landay/research/publi
cations/CHI96/short_storyboard.html.

[Leffingwell 2000] Leffingwell, Dean, and Don Widrig,
2000. Managing Software Requirements: A Unified
Approach. Boston: Addison-Wesley.

[Lin 2002] Nelson Lin, “Alternatives for Rule-based
Application Development,” Business Rules Journal,
Vol. 3, No. 10 (October 2002). URL: http://www.
BRCommunity.com/a2002/n007.html.

[MacDonald 2002] MacDonald, Mathew, 2002. User
Interfaces in C#: Windows Forms and Custom Controls.
New York: APress (Springer-Verlag, New York, Inc.).

[Malveau 2001] Malveau, Raphel, and Thomas].
Mowbray, 2001. Software Architect Bootcamp. Upper
Saddle River, NJ: Prentice Hall.

[Martin 1996] Martin, James, and James]J. Odell, 1996.
Object-Oriented Methods: Pragmatic Considerations.
Upper Saddle River, NJ: Prentice Hall.

[Martin 1995] Martin, James and James]. Odell, 1995.
Object-Oriented Methods: A Foundation. Upper Saddle
River, NJ: Prentice Hall.

[Mayhew 1992] Mayhew, Deborah, J., 1992. Principles
and Guidelines in Software User Interface. Englewood
Cliffs, NJ: Prentice Hall.

[McBreen 2002] McBreen, Pete, 2002. Software
Craftsmanship: The New Imperative. Boston:
Addison-Wesley.

[McClure 1997] McClure, Carma, 1997. Software Reuse
Techniques: Adding Reuse to the System Development
Process. Upper Saddle River, NJ: Prentice Hall.

[McConnel 1996] McConnel, Steve, 1996. Rapid
Development: Taming Wild Software Schedules. Redmond,
WA: Microsoft Press.

[Muller 1999] Muller, Robert J., 1999. Database Design
for Smarties: Using UML for Data Modeling. San
Fransisco: Morgan Kaufmann Publishers, Inc.

[Muller 19971 Muller, Pierre-Alain, 1997. Instant UML.
Birmingham, UK: Wrox Press.

[Naiburg 2001] Naiburg, Eric J., and Robert A.
MaksimChuk, 2001. UML for Database Design. Boston:
Addison-Wesley.

[Neighbors 19811 J. Neighbors, 1981. Software
Construction Using Components. Ph.D. Thesis. Irvine:
Department of Information and Computer Science,
University of California.

[Nock 2004] Nock, Clifton, 2004. Data Access Patterns:
Database Interactions in Object-Oriented Applications.
Boston: Addison-Wesley.

[Norman 2005] Norman, Jeremy M. 2005. From Gutenberg
to the Internet: A Sourcebook on the History of Information
Technology. Novato, CA: Historyofscience.com.

References

[Norman 2004] Norman, Donald A. 2004. Emotional
Design: Why We Love (or Hate) Everyday Things.
New York: Basic Books.

[Norman 2002] Norman, Donald A. 2002. The Design of
Everyday Things. New York: Basic Books

[Ommering, 2002] Ommering, Rob van, 2002. “Building
Product Populations with Software Components,”
International ~Conference on Software Engineering:
Proceedings of the 24th International Conference on Software
Engineering. ACM, 2002. URL: http://portal.acm.org.

[Orfali, 1997] Orfali, Robert, and Dan Harkey, 1997.
Client/Server Programming with Java and CORBA.
New York: John Wiley & Sons, Inc.

[O’Rourke 2003] O’Rourke, Carol, Neal Fishman, and
Warren Selkow, 2003. Enterprise Architecture Using the
Zachman Framework. Boston: Course Technology.

[Parnas 2001] Parnas, David L., 2001. Software
Fundamentals: Collected Papers by David L. Parnas.
Boston: Addison-Wesley.

[Petroski 2003] Petroski, Henry, 2003. Why There Is No
Perfect Design. New York: Vintage Books.

[Petroski 1985] Petroski, Henry, 1985. To Engineer Is
Human: The Role of Failure in Successful Design.
New York: St. Martin Press.

[Prieto-Diaz 1990] Prieto-Diaz, Rubén, “Domain Analysis:
An Introduction,” Software Engineering Notes, 152, April
1990. URL: http: // www.cs.jmu.edu.

[Ravichandran 2003] Ravichandran, T, and Marcus A.
Rothenberger, “Software Reuse Strategies And
Component Markets,” Communications of the ACM,
Vol. 46, No. 8. (August 2003).

[Reeder 2001] Judi Reeder, 2001. “Templates for
Capturing Business Rules,” Business Rules Community.
URL: http://www.brcommunity.com/cgi-bin/x.pl/
features/b056.html.

[Robertson 1999] Robertson, Suzanne, and James
Robertson, 1999. Mastering the Requirements Process.
Harlow, England: Addison-Wesley.

[Rosenberg 1999] Rosenberg, Doug, and Kendall Scott,
1999. Use Case Driven Object Modeling with UML: A
Practical Approach. Boston: Addison-Wesley.

[Royce 1998] Royce, Walker, 1998. Software Project

Management: A Unified Framework. Boston:
Addison-Wesley.
[Schneider 2001] Schneider, Geri, and Jason P. Winters,

2001. Applying Use Cases, Second Edition: A Practical
Guide. Boston: Addison-Wesley.

[Shneiderman 1986] Shneiderman, B., 1986. Designing
the User Interface: Strategies for Effective Human-Computer
Interaction. Reading, MA: Addison-Wesley.

[Shoemaker 2004] Shoemaker, Martin L., 2004. UML
Applied: A .Net Perspective. New York: APress
(Springer-Verlag, New York, Inc.)

[Smith 1986] Smith, Sidney L., and Jane Mosier, 1986.
“Guidelines for Designing User Interface Software,”
Report ESD-TR-86-278, Electronic System Division,
MITRE Corporation, Bedford, MA. URL: http://
hcibib.org/sam/.

[Sparks 2001] Sparks, Geoffrey, 2001. “Database
Modelling in UML,” Methods & Tools e-newsletter.
URL: http: //www.martinig.ch/mt/index.html.

[Spolsky 2001] Spolsky, Joel, 2001. User Interface Design
for Programmers. New York: APress (Springer-Verlag,
New York, Inc.).

[Starr 2004] Starr, Paul, 2004. The Creation of the Media:
Political Origins of Modern Communications. New York:
Basic Books.

[Stephens 2003] Stephens, Matt, and Doug Rosenberg,
2003. Extreme Programming Refactored: The Case
Against XP. New York: APress (Springer-Verlag,
New York, Inc.).

[Strum 1999] Strum, Jake, 1999. VB6 UML: Design and
Development. Birmingham, UK: Wrox Press Ltd.

[Szyperski 2002] Szyperski, Clemens, 2002. Component
Software: Beyond Object-Oriented Programming, Second
Edition. Boston: Addison-Wesley.

[Taylor 1998] Taylor, David A., 1998. Object Technology,
A Manager’s Guide: Second Edition. Boston: Addison-
Wesley.

[Tenner 1996] Tenner, Edward, 1996. Why Things Bite
Back. New York: Vintage Books.

[Togaf 2002] Open Group Architecture Forum (TOGAF),
2002. “Developing Architecture View,” The Open Group.
URL: http://www.opengroup.org/architecture.

[Urman 2002] Urman, Scott, 2002. Oracle 9i PL/
SQL Programming. New York: Oracle Press,
McGraw-Hill /Osborne.

[Van Gigch 1991] Van Gigch, John P, 1991. System
Design Modeling and Metamodeling (The Language of
Science). New York: Plenum Pub Corp.

[Van Slyke 2003] Van Slyke, Craig , and France
Bélanger, 2003. E-Business Technologies: Supporting the
Net-Enhanced Organization. New York: John Wiley &
Sons, Inc.

[Viera 2000] Viera, Robert, 2000. Professional SQL Server
Programming. Birmingham, UK: Wrox Press Ltd.

[Vitharana 2003] Vitharana, Padmal, “Risks and
Challenges of = Component-Based Software
Development,” Communications of the ACM, Vol. 46,
No. 8 (August 2003).

References

[Wampler 2002] Wampler, B. E., 2002. The Essence of
Object-Oriented Programming with JAVA and UML.
Boston: Addison-Wesley.

[Webster 1995] Webster, Bruce E., 1995. Pitfalls of
Objected-Oriented Development. New York: M&T Books.

[Weisfeld 2000] Weisfeld, Matt, 2000. The Object-Oriented
Thought Process: The Authoritative Solution.Indianapolis,
IN: Sams Publishing.

[White 1997] White, S. A., and C. Lemus, 1997. “The
Software Architecture Process,” University of

Houston-Clear Lake. URL: http://nas.cl.uh.edu/
whites/webpapers.dir/ETCE97pap.pdf.

[Wiegers 2003] Karl E. Wiegers, 2003. Managing Software
Requirements. Redmond, WA: Microsoft Press.

[Wirfs-Brock 2003] Wirfs-Brock, Rebecca, and Alan
McKean, 2003. Object Design: Roles, Responsibilities, and
Collaborations. Boston: Addison-Wesley.

[Wysocki 2000] Wysocki, Robert K., Robert Beck Jr.,
and David B. Crane, 2000. Effective Prject Management,
Second Edition. New York: John Wiley & Sons, Inc.

[Yourdon 1994] Yourdon, Edward, 1994. Object-
Oriented System Design: An Integrated Approach. Upper
Saddle River, NJ: Prentice Hall.

[Zachman 1987] Zachman, J. A., “A Framework for
Information System Architecture,” IBM Systems
Journal, Vol. 26, No. 3 (1987).

References

THE FOUNDATIONS

Information Systems

1. OVERVIEW

Information systems are systems that process data into information. We can
view an information system from various perspectives: its goals, its processes or its
components, that is, applications, information technology, people, and procedures.

Information systems are also products, and like other products they must satisfy
their consumers and be developed by following a methodology that ensures the best
possible quality and the best possible use of resources.

Chapter Topics

» Information and its components.

» System and its components.

» An overview of information systems.

» An introduction to information technology.

» The core building blocks of information technology.

» The concept of “application.”

» Information systems as products.

» The business of developing information system products.
» Information system as the infrastructure of the business.

» The enterprise of software development.

Introduction

To develop a modern information system, we must start with a clear understanding
that an information system is primarily a commercial product. All products such as
cars, houses, or computers might be built to satisfy demands or wishes that fall out-
side the domain of the marketplace, but it is the marketplace that defines their center
of gravity and shapes their overall features.

From Chapter 1 of Object-Oriented Systems Analysis and Design, First Edition. Noushin Ashrafi,
Hessam Ashrafi. Copyright © 2009 by Pearson Education, Inc. Published by Pearson Prentice
Hall. All rights reserved.

Figure 1
Information
System and Its
Components

Furthermore, we cannot arrive at an effective understanding of information
systems unless we comprehend their components—what they do, how they relate to
each other, and how they work together. Developing information systems and
software applications involves highly abstract concepts that have very concrete out-
comes and sometimes very serious consequences.

The term “information system” is relatively recent, but the concept is as old as his-
tory. As many historians have concluded, writing appeared with the need for account-
ing, the first application of information systems. Accounting has always exemplified
the everlasting components of the information systems: data as input, statements and
balances as output, arithmetic as the application of logic (processing), some sort of
storage or data management system, security to prevent unauthorized access, and
communication through oral and written symbols.

Information automation, however, has changed both the reach and role of infor-
mation systems within the human civilization. Information automation means that a
nonhuman device can apply information logic to data through a set of stored instruc-
tions or a “program.” This, in turn, means that information processing can become
more capital-intensive and less labor-intensive. Another consequence has been the
increasing commoditization of information systems. By packaging information logic
into software, automation has allowed information systems and applications to
become market products.

All commercial products have three basic traits in common: @ they must
satisfy certain requirements or take advantage of opportunities, ® they are
human artifacts and, therefore, must be built, and ® their development must
follow a methodology that helps to lower costs, raise quality, and make success
more likely.

To say, however, that the development of a product must follow a methodology
is not to say all products must be developed following the same methodology. Even
with the same product, methodology changes with technology, experience, theory,
scale, and context.

B
o

Processing
Input— Output
> v Logical Organization

Information

S@5)
‘ h:\ W‘ ‘
APPLICATIONS INFORMATION TECHNOLOGY PEOPLE PROCEDURES

Processing Unit(s) Communication System Control System Data Management System

An information system can be viewed from two angles: what requirements it must satisfy and
how it satisfies those requirements.

Information Systems

2. INTRODUCING INFORMATION SYSTEMS

& A broad definition
of “information”
would also include
works of art and
entertainment—
novels, poems,
movies, etc.—even
though their data are
not “real.” These
works, however, are
outside the scope of
this text, which is
information systems,
not information in
general.

o Any information
also relieson a
cultural context
to be meaningful.

A concise but separate review of both “information” and “system” is necessary
before we can effectively introduce information systems. The reach of both terms is
very wide, but each one constraints the other: An information system is not con-
cerned with every kind of information, but only those that can be obtained by pro-
cessing data through a system; it is not any system, but an open system that accepts
input, produces output, and has understandable logic.

Any information system requires an information technology, but the information
technology is not the same as the information system. The latter is not one technol-
ogy, but an interrelated and often rapidly changing collection of technologies and
subsystems.

Information

Information is an organized collection of data that allows its recipient to @ gain
knowledge, ® draw meaning, ® arrive at conclusions, or @ execute a set of actions
to reach an objective.

From this definition, it follows that the term “information” covers a very vast
ground:

* Anews report in the paper, on the radio, or on TV.
* The itinerary of your upcoming trip.

* The year-end balance sheet of a company.

* Abusiness report.

* A fire alarm.

* Abank statement.

* Abook on system analysis and design.

These items are all information—regardless of whether the data consists of words,
sounds, numbers, images, or other symbols. Some, like alarms and traffic signs, are
designed to communicate their intentions immediately, with a minimum amount of
data and a minimal need for interpretation. At the other end of the spectrum, news
reports, books, and documentaries paint a complex picture by offering a large amount
of data within a narrative composed of numerous logical packages (sentences,
paragraphs, pictures, dialogues, and scenes).

In practice, how we characterize “information” depends on our judgment and
on our expectations. However, regardless of how we designate it, any information
has three main constituents: data, purpose, and logical organization.

Data

Data are the building blocks of information.

Information Systems

& Properly
speaking, datais the
plural form of Latin
datum and many insist
that the separation
between the plural
and the singular
should be maintained.
But, for better or for
worse, it seems that
“data” will play both
roles in the English
language. Therefore,
it is the verb that must
distinguish between
“data” as a single
item and “data” as
plural.

The original
meaning of datumin
English was
“assumption.” And
“fact,” at some point
in the past, meant
“crime” (@ meaning
which still applies to
“accessory after the
fact.”)

&= A logical
conclusion

(or information) would
prove incorrect if the
data are wrong or
unrelated. Logic is a
matter of form, not
of content. In other

Data are the facts or assumptions that are structured within a logical framework
to convey information. In other words, data are the raw material for information:

Data Information

Deposits, withdrawals, interest, and service charges Bank Statement
for a certain month, plus the forwarding balance

from the previous month.

Moving images, dialog, music, and commentary. Television Report

Titles, subtitles, words, paragraphs, quotations, Newspaper Report
and pictures.

The red outline of a circle bisected by a red line. No Entry!

Weigh, height, cholesterol, sugar level, age, Patient Profile

symptoms, etc.

It is often said that data are meaningless by themselves until they are turned into
information. (Hence the modifier “raw,” which is frequently added to “data.”) This is
true in many cases, especially when the data consists of numbers, but the relation-
ship between data and information is usually multileveled and subtle: A deposit to
your bank account is meaningful by itself, even though it must be placed in the con-
text of other data to present the monthly activity and the state of your bank account.
(See Data Hierarchy later in this chapter.)

“Unfounded” is the usual term for the information that lacks data or is based on
wrong or incomplete assumptions.

Goal

Information has an objective.

Any information must have a purpose, a meaning that it wants to impart or a
goal that it wants to achieve. Some goals are simple, some are ambitious, and some
are open to multiple interpretations:

Information Purpose

Bank Statement Reports how much money you had in your account at
the beginning of the month, the amounts that you
deposited or withdrew during the month, bank

charges, and how much you have now.

Communicates (or tries to communicate) the what,
when, where, how, and (perhaps) why of an event to
its audience.

Television Report

Year-End Corporate Report Attempts to tell shareholders (or anybody else who
might be interested) how well the corporation did in
the previous year (and why) and what to expect for

the next year.

Information Systems

words, the form must
be correct but its
correctness does not
ensure that the
conclusions are true.
Some logical fallacies
can be detected easily,
while others are more
difficult to identify.
(Understanding logic is
very important to
anybody who wants to
work with information
systems. But, alas,
this text is not

about logic.)

7o

If the information lacks an understandable purpose, we call it “pointless,” “ram-

bling,” or a similar term.

Logic

The objective of information is achieved through logic.

To arrive from data to meaning, information must follow a logic—simple or com-
plex, apparent or not readily apparent. (“Nonsense” is the term we apply to informa-
tion if it lacks logic, and “misleading” or “sophistry” is applied if it follows an
unacceptable logic.)

The purpose and the logical organization of information may be combined into
an infinite number of packages. The only constant is that without either, data does
not become information.

Figure 2 is an easy-to-understand chart. Acme International enjoyed
a rapid growth from 1995 to 2002, but witnessed its fortunes reversed in
the 2003-2004 period. Left to themselves, the underlying data would not
enlighten us as to the fortunes of the company. By correlating the sales
figures (the Y axis) and the years (the X axis) we arrive at certain conclusions (or
knowledge).

Figure 2
From Data to

ACME INTERNATIONAL

[0, 250, LS80, 850, 100, 590, 530, 1750, 750,

Information
! Information results from
SALES FIGURES providing data with a
logical organization that
2,250 serves a purpose. In this
2500 — i chart, it is the logical
’ correlation between the
1,790 years and the sales fig-
1600 || ures for 10-year periods
» ’g‘ 2,000 — =7 that allows us to con-
; 3 N | clude that Acme has
&2 fallen on hard times.
g ?5 1,500 — 990
2 S0P 850
E S 750 =
= 530
> —
8 z 1,000 490 aH N
250
500 — i.‘i
L3
o \995\99"\991 199199 2000 505 5007 500% 500

YEAR

:

1995, 1996, 15997, 1998, 15991, 2000, 2001, 2002, 2003,

Information Systems

12

[Van Gigch 1991,
30-31]

Two points are crucial for understanding how data is processed into information:

© Information uses data selectively. Since the process has a purpose, the data
that underlies the information is always selective because it must relate to the
purpose. For example, our chart does not represent all data about Acme
International (which is not possible, in any case); nor does it even show all
sales figures, but only software sales and only yearly totals for a specific
period.

® Information is only as valid as the logic that produces it. Since the process
organizes data based on a certain logic, if the logic is wrong, distorted, or
incomplete, the resulting knowledge will be wrong, distorted, or incomplete as
well, even if every assumption is an undisputable fact. The chart about Acme
International suggests a company in trouble, but what if Acme has a thriving
hardware business and is actually dismantling its software division by selling it
off piece by piece? If the answer to this question is affirmative, then the logic of
presenting only the software sales as a reference to the overall fortunes of Acme
is misleading.

Symbols

Both data and information are expressed as symbols.

The bulk of information that we send or receive is expressed through verbal
symbols. But information is by no means limited to verbal messages. (The chart in
Figure 2 is a hybrid message: Its verbal and visual elements reinforce each other.)
Information can be delivered by sound, pictures, or multimedia as well: traffic
signs, smoke signals, the sound of a bugle instructing soldiers what to do, skulls
and crossbones (which can mean both “pirate” or “this is a dangerous place: stay
clear”).

Data Hierarchy

The relationship between data and information is hierarchical.

Something that is considered “information” at one level may be used as “data”
in a higher level, and vice versa. The distinction depends on the purpose. For
instance, the chart about Acme’s software sales can become “data” if we intend to
merge it into a fuller report about Acme International or industrial trends between
1995 and 2004. (Each yearly sales figure or column in the chart, in turn, consists of
many sales figures within each year.)

System

A system is a set of interrelated elements organized into an identifiable whole.

The majority of systems, natural or man-made, fulfill a function. Hence, we may
also define “system” as a collection of elements that work together to perform a task.

Information Systems

Figure 3 Data Hierarchy: One Person’s Information Is Another Person’s Data

X

Y
CEO
Salesperson records Sales department Chief operating officer Chief executive officer
detailed sales processes detailed data analyzes sales processes high-level
figures and to pay commissions reports in the input to set policy
demographic data and to report on sales context of corporate and devise
about the customers. patterns and overall sales. goals and policies. corporate strategy.

Information at one level often becomes input data for a higher level.

The elements may be few or many, they may be very similar or extremely different, the
collection may be tightly knit or loosely connected, and the function may be simple or
complex. Examples are plentiful:

Elements System

Locomotives, wagons, tunnels, railroads, Railroad System
switches, engineers, conductors, etc.

Microprocessor(s), printed circuitry, keyboard, Computer
monitor, mouse, operating system, storage, etc.

Receipts, canceled checks, correspondence, folders, Filing System
file cabinets, etc.

Canals, ditches, dams, sprinklers, etc. Irrigation System

Organs, such as the lungs, that deliver oxygen Respiratory System
to the circulatory system.

To correctly understand information systems, we must achieve a clear under-
standing of the parts that constitute the definition of system: elements, interrelation-
ships, organization, and the “identifiable whole” (or the distinct identity of the
system).

Information Systems

13

14

[American Heritage
1996]

©® Elements of the System: A system is not monolithic, but consists of a set
of elements. The constituent elements of a system can be real objects (parts
of a watch), virtual objects (characters in a computer game), concepts
(words in a sentence), or a combination of all (an automated factory). The
constituent elements of a system are also called components. A component,
in turn, may consist of other elements or components.

® Interrelated Elements: The elements making up a system must be both related
and interrelated. An element within a system must interact with at least one
other element and the interactions must, directly or indirectly, link all elements.
A fruit basket does not qualify as a system even through it consists of a set of
related entities packaged as “an identifiable whole”; a class of students, on the
other hand, is a system even if no word passes among the students because the
teacher provides a focal point of interaction.

® Organization: Elements within a system must have a formal structure.
Organized means “functioning with a formal structure, as in the coordination
and direction of activities.” No formal structure means no system. In other
words, we do not consider a random assembly of entities as a “system.”

@ Identifiable Whole: A system must have a distinct identity. We have heard,
often enough, that “a whole is greater than the sum of its parts.” If we cannot
identify a whole that is more than a collection of elements, then, at best, we
have identified a set of related elements, not a “whole.” Prime numbers (those
divisible only by one and themselves) do not constitute a system, but a set.

® Subsystems: A subsystem is a system that functions as a component
of another system. An element within a system can be a system in its own
right, in which case it is called a subsystem. In fact, any system can be a sub-
system of a bigger system. The human body consists of several subsystems—
respiratory, alimentary, nervous, etc.—while, in turn, a human is a component
of the society.

® Open and Closed Systems: The relationship of a system to the outside is iden-
tified by its place on a spectrum from open to closed. An perfect open system is
one that @ accepts input, ® the logic of its internal workings can be understood
and/or changed, ® can change as a result of interaction with the outside world,
and @ produces output. A closed system is the opposite of an open system. No
system, however, is “perfect.”

Networks vs. Systems

A network is a cooperating set of relatively independent elements.

The terms “network” and “system” are often used interchangeably and, indeed,
they overlap in many aspects: Like systems, networks consist of a set of interrelated
elements. The differences appear when we move towards stricter definitions of both
terms:

® While the elements within a system cannot function the same way if they are
taken out of the system, elements within a network are more or less able to
function independently. (The circulatory system of the human body is a typical
example of the “system,” whereas workstations connected to the Internet are
members of a “network.”)

® Anetwork has a less sharply defined identity as a “whole” than a system.

Information Systems

&= As we shall see
immediately below,
any information
system is vitally
dependent on storage
and communication
systems, and vice
versa.

& Qur purpose here
is not to split hairs
between information
systems and
information
technology. But too
many people involved
in developing and
using information
systems are waylaid
by the siren of
technology. And, too
often, technological
solutions are offered
as information system
solutions.

So, if you are told
that a company’s
information system
consists of so many
servers, such and such
netwaorks, etc., do not
object to the term:
After all, the usage is
very widespread, easy
to understand, and not
entirely wrong as no
information system
exists without an
information
technology. But keep
the question open:
What does this
system actually do
(or should it do) for
the information needs
of the company?

These differences, however, depend on the nature and the organization of the system
or the network in question. In a network of roads, individual elements (roads) are
less dependent on each other than the components within a computer system. In
addition, elements within a network are not necessarily of equal importance: in a
computer network, the failure of a server can effectively halt the operation of the
network.

A system or network in which the constituent elements are highly dependent on
each other is described as tightly coupled (which, of course, is a relative term). The
Internet is an example of a loosely coupled network in which the failure of a part
does not bring the whole “system” to a halt.

In general, the more loosely coupled a system or a network is, the less it is prone
to failure. As a result, however, as the coupling is loosened the role of a central
authority is diminished—for good or for bad.

The Information System

An information system is a system that processes data into information according
to a predictable set of logical assumptions.

As you would expect, our assertions about information and systems apply to
information systems as well, but with qualifications that partly arise from the act of
combining the two:

* An information system is an open system: It takes input and produces output
based on a logic that is comprehensible. A closed system—with no definable
input, output, and/or logic—is not an information system.

* An information system processes data (or input) into information (or output).

A system that manages data is a data management system and a system that
sends and receives data or information is a communication system. The two are
components of an information system but neither is the information system
itself.

e Since information has a goal and is selective regarding data, an information sys-
tem must have goals and be selective as well.

¢ Information systems are man-made. Therefore, information systems share many
properties with other human products: They serve a range of social and eco-
nomic needs; they are built by using available methodologies, processes, and
tools; and they are subject to rational and irrational forces (such as theorizing,
experience, fashion trends, and prejudices).

Even though numerous sources of information exist, not all can be deemed
“information systems.”
The major components of any information system are:

* Applications that perform specific tasks.

* Information technology that consists of processing and control units, and
communication and data management systems.

* People who use the system or who provide it with services.

* Procedures that decide how the information system is operated and by whom.

Information Systems

15

16

The Information Technology

Information technology is the know-how, methods, tools, and material used to
support information systems.

Data and, as a result, information are always virtual. Anything virtual needs a
real vehicle to be sent, received, stored, or manipulated. Therefore, any information
system is shaped by, and is dependent on, an information technology or technologies
that carry and maintain it. (As we mentioned, information systems and information
technology are so intertwined that they are often used interchangeably, and distin-
guishing them in certain areas is rather difficult.)

As the definition indicates, information technology is not one thing, but a set of
interrelated components:

e Know-how is the knowledge and the skill required to do something correctly.
The technology would go to waste if the developers of a product do not know
how to shape and exploit its material base.

* Method is a systematic way of accomplishing something. Methods result from
both experience and the theoretical interpretation of experience. Methods func-
tion as guidelines to people with know-how to accomplish a task. In turn, new
experiences must refine existing methods, or else methods lose their relevance.

* Material has a complex and varied relation to the technology that uses it.
Increasingly, the invention of new material and methods is not left to chance,
but is targeted. Modern research labs systematically experiment and search for
material and solutions that are required by the expressed needs of the business
or the marketplace.

Usually, a technology is not used to its full potential when it emerges. The Internet,
the foundations of which were laid by DARPA (Defense Advanced Research Projects
Agency) in 1973, was more than anything else an imaginative use of existing com-
puter technology. In turn, the impact of the Internet would have been minor without
improvements to the computer technology and the availability of rather inexpensive
but reliable personal computers.

The technology to support an information system is, itself, composed of one or
more processing units and three systems: communication, data management, and
control. These systems are conceptually distinct but are intertwined in actuality.
Furthermore, each system, in its own way, has a foot in the real world and another in
the virtual world of the information system, bridging the gap between the two.

Processing Unit(s)

A processing unit is an entity that applies the logical rules of the information
system to data.

Until the invention of mechanical calculators and then electronic CPUs (central
processing units), the processing units were humans employed to process data into
information: mainly accountants (as information systems mostly performed book-
keeping functions), but also surveyors, mapmakers, census takers, tax estimators, etc.

Information Systems

As previously mentioned, an information system is a system that processes data
into information based on a set of logical rules. Processing units play a vital role in
information systems, but they are not the whole story. Let us explain.

Banks, and the concepts of “bank account” and “double-entry bookkeeping,”
predate modern computers by many centuries. But the logical rules are essen-
tially the same: When a bank customer deposits money in the bank, the amount
(data) is credited to the customer’s account (processing) and the balance of both
the customer’s account and the overall bank’s debts and assets is adjusted
accordingly (information). Before the advent of computers, bank clerks per-
formed the required processing (with the help of abacuses and calculators). With
the adoption of computers, the CPU applies the same logic and performs the cal-
culations. But the processing units merely apply the logical rules with varying
degrees of speed and accuracy: They do not set the rules by which the informa-
tion system operates.

The technology of processing data, of course, is not irrelevant to the function-
ing of information systems. Far from it: The speed and the accuracy of electronic
processing units have radically changed expectations and, consequently, the logi-
cal complexity of information systems has reached a point where resorting to
any previous technology has become inconceivable. Modern businesses, govern-
ments, factories, and airlines (to name only a few) would grind to a halt without
computers, even if they can employ thousands of clerks equipped with the best
abacuses.

Still, it is crucial to remember that it is the creators of information systems who
set the logic (simple or complex) that the technology executes.

The Communication System

The communication system transmits data to the information system and carries
information back to its users.

Without incoming data and outgoing information, a processing unit (and, as a
result, the whole information system) would be useless. It is the task of a communi-
cation system to carry messages to and from an information system.

Communication systems (or networks) are many and varied: the telephone sys-
tem, the postal service, the network of geocentric satellites, the telegraph network
(that quietly passed away quite recently). But, regardless of technological sophistica-
tion, any communication system consists of communication devices, protocols, and
the connections between those devices:

* Devices. A phone set, a fax machine, a modem, an envelope, a computer key-
board, and a monitor are all communication devices. The task of a communica-
tion device is to encode messages (data or information) into packages that can
be carried by the system to another device that will decode the message for the
benefit of the recipient. (The content of the message is irrelevant to the commu-
nication device or the communication system.)

* Protocols. Protocols are a set of rules or standards that allow two devices to
communicate. Like data and information, the protocols are virtual, even though
they are carried by real mediums: electrical current for the telephone and the
computer, written symbols on the back of envelopes, or hand signals in the
communication between the hearing-impaired.

Information Systems

17

18

o) The data that is
stored “for keeps” is
called persistent and
the act of storing such
data is persistence.
Remember these
terms, as they are
used extensively in
object-oriented theory
and in this text.

& A databaseis a
collection of related
data, while a data
management system
includes not just data,
but also rules,
procedures, the
material on which the
data is stored, and,
depending on the
technology, people

in one capacity

or another.

* Connections. Communication devices cannot exchange messages unless they
are connected through some medium: electrical current over copper wires, light
waves over optical fibers, radio waves, visual spectrum, voice, etc.

Information systems are so intertwined with communication systems that often it is
very difficult to distinguish where one ends and the other starts. The most important
distinction is not technological but conceptual: If a system processes data into informa-
tion, it is an information system; if it carries messages with disregard to their contents,
it is a communication system.

The Data Management System

A data management system is a set of rules, procedures, material, and tools that
stores, organizes, protects, and retrieves data needed by the information system.

All information systems need data management systems to safe-keep data—
before processing and after, temporarily or permanently. But a data management
system is more than just a cellar for storing data. It must also:

° organize the stored data in a manner that can be retrieved as needed;

e establish connections between related data;

* ensure the integrity of data against decay, misplacement, and erroneous identi-
fication; and

* secure data against unauthorized access and manipulation.

Modern database management systems have gone far beyond the mere management
of data. Though conceptually we should still distinguish them from information
systems in the strict sense of the term, they have incorporated many information
system functions such as the enforcement of business rules (or logic). In effect, there
is no longer a distinct and actual border between the two systems.

The Control System

The control system @ directs and facilitates the interactions between the building
blocks of the information technology, and @ provides the information system with
the services of information technology.

Information systems have goals that are usually reflected in the names of their
applications: accounts payable, college registration, stock trading, supply chain
management, and so on. But, as we have said, information systems must use a set
of technologies to connect to the real world. This requirement presents two
challenges:

* how to achieve the connection between the virtual world of the information
system and the real world, and
* how to maintain and manage the technology that supports such connections.

Answering these challenges is the task of the control system. For computer technol-
ogy, the most important (and the best-known) component of the control system is the

Information Systems

& Itis interesting
to know that

early electronic
computers—circa
1940s—did not have
operating systems. It
was with the
introduction of IBM’s
System 360 in 1964
that a well-defined
concept for “operating
system” was
established.

& Even though this
text is not about
technology per se,
without the
automation of
information systems it
would not have
existed. The
emergence of each
significant technology
allows (or forces)

us to view many
non-technological
concepts in a new
perspective. Without
the need to program
machines to process
data, we would not
have been required
to examine
information concepts
under a microscope.

& Two of the most
important and
promising
technologies in the
effort to achieve
interoperability are
Web services and
XML, which we will
discuss later in

this text.

operating system, nowadays known as a “brand name” software product (such as
Linux, Windows, Unix, etc.) that controls the operations of a computer and network.

But the control system goes beyond the operating system. First, even in comput-
ers, the control system is not all software: Every computer has a hardware “control
bus”—a set of lines or conductors that carry signals and instructions between the
CPU and various devices. Second, no operating system can function without utilities
(programs that carry out specific housekeeping tasks) and drivers (software that
allows communication between the general-purpose operating system and specific
devices).

In other words, a control system is an interconnected collection of subsystems and
entities—hardware and software—that caters to the specific needs of the technology
on which that information system operates. For non-automated technologies, the
control system also includes people, actions that they must take, and procedures that
they must follow to ensure the successful operation of the technology.

Information Automation

Information automation is the application of information logic to data by a device
that executes a program.

The term “automation” applies to numerous areas in which labor-saving
machines that can (more or less) operate on their own have replaced (or nearly
replaced) humans: manufacturing, telephone switches, military drones, automatic
controls, and so on. In fact, automation has found its way into common household
items as well: TV sets, video recorders, radios, and personal computers.

By now electronic computers are so common that conceiving any other auto-
mated device for processing data is difficult. Indeed, the terms “information system”
and “computer” have become near synonyms.

In the past fifty years the progress in the automation of information technology
has been impressive but the trend does not show any signs of slowing down. On the
contrary, the existing technology is overhauled constantly and new areas appear
continuously. One of the latest is interoperability, driven by strong market demand:
Producers and consumers of information are searching for standards and technolo-
gies that would allow exchange of information free from the current obstacles result-
ing from incompatibilities among systems and lack of standards.

In the blizzard of new tools, standards and protocols for the technology of infor-
mation automation, one important rule must not be overlooked:

The task of the information technology is to support information systems; the task
of information systems is to support human enterprises.

As we shall explain later, the problems of information systems and the issues of
the information technology belong to two different (although related) spheres: the
“problem space” and the “solution space.”

Applications and Systems

An application is a set of programs that performs a specific task.

Information Systems

19

20

& [tis difficult to
declare, with any
certainty, when the
awareness of the
shortcomings of
monolithic software
became clear. The first
major practical steps
to remedy the
situation, however,
can be attributed to
the late 1970s and
early 1980s.

Applications are software programs that help their users perform well-defined
jobs: word processing, photo editing, contact management, accounting, etc. However,
we started this chapter by introducing information systems, not applications. So what
is the difference?

At one time, no great difference existed. Very early electronic computers were
capable of solving only individual functions. Later, they grew to handle more com-
plex tasks, from processing payroll to analyzing sales. The structure of the applica-
tions, however, remained the same: a monolithic piece of software that performed a
task, from the beginning to the end, by itself. And these monolithic pieces were usu-
ally called applications.

At a certain point in time, the combination of rising expectations and increas-
ingly powerful computing platforms resulted in monolithic applications that
were more capable and complex but also more fragile and prone to failure.
(Imagine, if possible, a modern passenger jet made up of one piece, not thousands
of parts.)

The early efforts to address the issue of complexity in software were focused
on the inside of the application: how to structure various functions within the appli-
cation to facilitate its construction and maintenance. Next came the idea of
modularity: the concept that an application can be constructed from a set of mod-
ules, conceived around a certain functionality—database module, calculation mod-
ule, reporting module, etc., so that the code would become more reusable and
reliable, teams of programmers could work on different parts of the application,
and redundancy would decrease. This approach also resulted in the acceptance of
general-purpose libraries: pieces of independent software that could be used by
unrelated applications that, nevertheless, share certain common needs.

The realization that managing complexity needs a new vision appeared only
gradually (and under the fire of failures). This vision holds that, to be successful,
applications cannot be conceived as islands unto themselves.

Applications must be viewed and developed as integral parts of an information
system.

In other words, applications can no longer remain as monolithic “pieces” of soft-
ware, but must be constructed as components of a system (even if the system sup-
ports only one application). The “system” approach allows software to absorb
complexity without falling victim to it.

Two other trends have supported this approach: object orientation and software
development as an architectural enterprise.

3. THE INFORMATION SYSTEM AS PRoODuUCT

Before information automation, the term “information system” was not applied to
what we now associate with it. Companies had “accounting” (the oldest type of
information system, undoubtedly), surveyors gathered geographical data, mapmak-
ers made maps, spies gathered intelligence, and so on. Even after computers first
appeared in the workplace, software was not considered as merchandise, a product
that you build for selling in the marketplace and buy from the marketplace.

Information Systems

